direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22×C22⋊C4, C24⋊4C4, C25.2C2, C23.58D4, C22.5C24, C23.68C23, C24.35C22, (C23×C4)⋊2C2, C23⋊5(C2×C4), (C2×C4)⋊3C23, C2.1(C23×C4), C2.1(C22×D4), C22⋊2(C22×C4), C22.57(C2×D4), (C22×C4)⋊15C22, SmallGroup(64,193)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×C22⋊C4
G = < a,b,c,d,e | a2=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >
Subgroups: 505 in 337 conjugacy classes, 169 normal (6 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C22⋊C4, C22×C4, C22×C4, C24, C24, C24, C2×C22⋊C4, C23×C4, C25, C22×C22⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C23×C4, C22×D4, C22×C22⋊C4
(1 5)(2 6)(3 7)(4 8)(9 21)(10 22)(11 23)(12 24)(13 32)(14 29)(15 30)(16 31)(17 27)(18 28)(19 25)(20 26)
(1 9)(2 10)(3 11)(4 12)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 31)(26 32)(27 29)(28 30)
(1 11)(2 28)(3 9)(4 26)(5 23)(6 18)(7 21)(8 20)(10 30)(12 32)(13 24)(14 19)(15 22)(16 17)(25 29)(27 31)
(1 31)(2 32)(3 29)(4 30)(5 16)(6 13)(7 14)(8 15)(9 25)(10 26)(11 27)(12 28)(17 23)(18 24)(19 21)(20 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,21)(10,22)(11,23)(12,24)(13,32)(14,29)(15,30)(16,31)(17,27)(18,28)(19,25)(20,26), (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,31)(26,32)(27,29)(28,30), (1,11)(2,28)(3,9)(4,26)(5,23)(6,18)(7,21)(8,20)(10,30)(12,32)(13,24)(14,19)(15,22)(16,17)(25,29)(27,31), (1,31)(2,32)(3,29)(4,30)(5,16)(6,13)(7,14)(8,15)(9,25)(10,26)(11,27)(12,28)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,21)(10,22)(11,23)(12,24)(13,32)(14,29)(15,30)(16,31)(17,27)(18,28)(19,25)(20,26), (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,31)(26,32)(27,29)(28,30), (1,11)(2,28)(3,9)(4,26)(5,23)(6,18)(7,21)(8,20)(10,30)(12,32)(13,24)(14,19)(15,22)(16,17)(25,29)(27,31), (1,31)(2,32)(3,29)(4,30)(5,16)(6,13)(7,14)(8,15)(9,25)(10,26)(11,27)(12,28)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,21),(10,22),(11,23),(12,24),(13,32),(14,29),(15,30),(16,31),(17,27),(18,28),(19,25),(20,26)], [(1,9),(2,10),(3,11),(4,12),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,31),(26,32),(27,29),(28,30)], [(1,11),(2,28),(3,9),(4,26),(5,23),(6,18),(7,21),(8,20),(10,30),(12,32),(13,24),(14,19),(15,22),(16,17),(25,29),(27,31)], [(1,31),(2,32),(3,29),(4,30),(5,16),(6,13),(7,14),(8,15),(9,25),(10,26),(11,27),(12,28),(17,23),(18,24),(19,21),(20,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
C22×C22⋊C4 is a maximal subgroup of
C24.17Q8 C23⋊2C42 C24.50D4 C24.5Q8 C24.52D4 C25.3C4 C24.68D4 C24.78D4 C23⋊C42 C24.90D4 C23.194C24 C24.91D4 C23.203C24 C23.224C24 C23.240C24 C23.304C24 C24.94D4 C24⋊8D4 C23.311C24 C24.95D4 C23.318C24 C23.324C24 C24⋊4Q8 C23.372C24 C23.380C24 C23.382C24 C24.96D4 C23.434C24 C23.439C24 C23.461C24 C24⋊10D4 C24.97D4 C24⋊5Q8 D4×C22×C4 C22.79C25
C22×C22⋊C4 is a maximal quotient of
C25.85C22 C23.179C24 C24.90D4 C23.191C24 C23.192C24 C24.542C23 C24.549C23 C23.223C24 C24.73(C2×C4) D4○(C22⋊C8) C23.C24 C23.4C24 M4(2).24C23 M4(2).25C23 C24.98D4 2+ 1+4⋊5C4 2- 1+4⋊4C4 2- 1+4⋊5C4
40 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2W | 4A | ··· | 4P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C4 | D4 |
kernel | C22×C22⋊C4 | C2×C22⋊C4 | C23×C4 | C25 | C24 | C23 |
# reps | 1 | 12 | 2 | 1 | 16 | 8 |
Matrix representation of C22×C22⋊C4 ►in GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[3,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,1,0] >;
C22×C22⋊C4 in GAP, Magma, Sage, TeX
C_2^2\times C_2^2\rtimes C_4
% in TeX
G:=Group("C2^2xC2^2:C4");
// GroupNames label
G:=SmallGroup(64,193);
// by ID
G=gap.SmallGroup(64,193);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,192,217]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations